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ABSTRACT

Neural networks provide an important approach to adaptive and learning behavior in
robotics and automation systems for manufacturing applications. Computational neural
networks with capabilities for supervised learning, matching, and generalization offer an
efficient means for implementation of new automation systems by providing tools which
facilitate the integration of sensors and mechanisms, the adaptation of control structures
to new situations, the flexible planning and scheduling of tasks and tasks sequences, and
the increase in reliability through adaptive learning of actions. Automated assembly is
one example of a manufacturing task which requires extensive integration of mechanisms
and sensors. New corputational approaches to geometric reasoning, task planning,
motion planning, flexible sensor-based control, and error recovery would decrease the
implementation cost and increase the reliability of these systems. Robotics often requires
an experimental approach to the development and demonstration of new techniques, and
the effective use of neural networks in a specific applications domain such as
manufacturing will require consideration of the problems and constraints posed by that
domain.
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1. INTRODUCTION

This paper provides an overview of applications of neural networks in robotics
and automation with particular emphasis on potential applications to manufacturing. The
paper summarizes some individual views presented at the NSF Workshop and provides
examples from the author's work. It does not attempt to review the literature in these
fields. Background on the basic technologies may be found in standard texts such as [I].
The paper will focus on issues which arise in those applications that lend themselves to
solutions by techniques involving adaptive or learning systems such as neural networks.

Neural network computing methods provide one approach to the development of
adaptive and learning behavior in robotic systems for manufacturing. Computational
neural networks have been demonstrated which exhibit capabilities for supervised
learning, matching, and generalization for problems on an experimental scale. In this
paper we point to a number of issues in the manufacturing applications of robotics where
these capabilities will be extremely important. Supervised learning could improve the
efficiency of training and development of robotic systems. Matching provides a means to
execute the learned behavior and will be important in areas such as industrial inspection
and control and task execution functions. Generalization capabilities of neural networks
will require more long-term research, but could facilitate the flexibility of systems in
their capacity to adapt to new tasks. Several examples of these applications are discussed
in this paper.

Manufacturing continues to be economically the most important application of
robotics and automation technology. The use of adaptive and learning capabilities in
automation systems to simplify the implementation process and to improve the reliability
of these systems, may have a tremendous practical impact. Robotics and automation
technology has an important role in a variety of different manufacturing tasks. These
include such areas as parts handling, metal cutting, paint spraying, plastic molding,
welding, fastening systems, assembly, and many other more specialized operations. In
manufacturing, most such applications are integrated into a larger manual or automated
system, and the requirements of this overall systems function often dominate the success
and capability of any particular operation. Therefore, it is important in evaluating a
particulartechnology or the potentialimpact of a new technology such as neural

networks to assess the impact on the overall system. As a means to describe some
characteristics of these manufacturing systems, in the next section we will consider the
example of automated assembly systems in more detail In Section 3 we will discuss
overallissuesand opportunitiesforneuralnetworks inmanufacturing applications.

2. AUTOMATED ASSEMBLY: AN EXAMPLE

The key obstacle to making manufacturing systems work economically and

efficientlyin industry today is most often the overallsystems coordinationand not the
controlof specificdevices. An example of a roboticassembly work cellisshown in the

photograph in Figure I [2].This work cellconsistsof threerobot arms, a movable work

surface and fixm.dng, and several different types of sensors. The function of this
assembly work cell is to acquire parts that are presented to the system, orient the parts in
a prescribed manner, mate the parts into predetermined relationships, and fasten the parts
into a f'mal stable configuration. While such an assembly work cell depends on the speed
and accuracy of its individual components, the overall capabilities are most closely
related to its capacity as a system to reliably integrate functions of positioning, grasping,
and sensing. Currently, the difficulty in developing such systems for manufacturing
applications is in the implementation, planning, programming, and coordination of the
various devices in order to create a reliable system, rather than in the choice of particular
mechanisms.



FIGURE 1. Flexible Assembly Workstation Developed for
Electronics Manufacturing (Reprinted from [2]).



The planning and programming that are required to design and implement an
assembly work cell are usually organized into a hierarchical set of levels such as that in
Figure 2. Many similar hierarchies have been described in the literature, and we will not

attempt to discuss differences among these models here. The highest level of
implementation involves the planning of the task itself and this is directly related to a
representation or description of the product and its parts. The decomposition of the task
must then be coordinated with the available set of resources such as robots, fixtures, and
sensors. This decomposed set of tasks is mapped onto a control architecture that defines
the coordination and sequencing relationships among the various devices. The
scheduling of discrete operations, of robot motions, and the continuous real-time motion
control itself are implemented at the lower levels of the structure.

Much of the implementation cost in developing such a system is in the definition
of an architecture such that communication between levels remains consistent and

reliable, and the implementation of new tasks or the redef'mition of tasks, can be

accomplished with minimal redesign. One important impact of adaptive and learning
technologies, such as neural networks, may be an enhanced capability to develop robust
hierarchical systems. Adaptive behavior at one level will ease the requirements for
specific coordination with other levels. In addition, broader learning capabilities in
general provide the capability to define these structures in a more abstract sense so that

they could be adaptive or re-programmed more easily for changing task requirements. In
practical industrial situations a large fraction of the implementation costs may be spent
on development and programming rather than the capital cost of equipment. The
capacity to provide more efficient implementation through automatic learning systems
could have significant impact on the economics of building automation systems for
manufacturing applications.

Most planning and programming tasks for industrial appplications are currently
carried out manually. In many cases, the product design, the manufacturing systems
plan, and the f'mal manufacturing systems implementation may be carried out by different
organizations. The evolution of improved tools and methods to carry out these processes
will have an important impact on the effectiveness of manufacturing organizations to
respond to new technical and economic opportunities. A key to the development of such
improved tools and environments will be the incorporation of both generic methods for
computation and reasoning with applications specific knowledge and representation of
tasks. The successful utilization of neural networks techniques in the planning and
control of manufacturing systems will depend upon the detailed domain specific
understanding of the applications area at hand. The demonstration of effective neural

network approaches to task planning, sequencing, scheduling, routing, discrete control,
sensor based control, fine motion control, or error recovery for a given task domain such
as assembly or machining would represent a significant achievement and would
emphasize the importance of these computational approaches.

The development of a demonstration of computational performance for a domain
specific problem such as assembly or machining requires careful attention to the issue of
task representation, including assumptions and constraints which are inherent to that
rnanufacmring domain. In our work on assembly sequence planning [3, 4, 5], we have
developed a relational model of product parts geometry and relationships which enable us
to reason about the feasability of task operations and, therefore, successfully generate and
evaluate alternative feasible sequences for accomplishing the assembly goals. In the
assembly problem, the task decomposes into a sequence of subassembly mating
operations, each of which is governed by geometric and mechanical constraints. In an
other task domain such as machining, the task may decompose into a sequence of
alternative milling or cutting operations, each of which also has its own geometric and
mechanical constraints. In each of these problem domains, the search over alternative

sequences of operations is closely coupled to the evaluation of feasibility predicates
which incorporate geometrical and physical reasoning problems. A new approach to the
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representation of the geometric or physical relationships appropriate to these elementary
operations which lends itself to efficient computation using neural networks would be a
very important contribution to the development of these design and planning tools.

An appropriate domain specific approach may also significantly simplify the
representation of the task and lend itself to more efficient planning of sequences. In our
approach [3, 4, 5], we have introduced the AND/OR graph strucnn'e as a representation
of feasible assembly plans. Such an AND/OR graph representation is a distributed state
representation for the assembly or disassembly process. In our work on assembly
sequence planning, we have demonstrated the completeness and correcmess of this
AND/OR graph representation, and have shown the equivalence of this representation to
a directed graph of assembly states as well as to several classes of precedence relation
representations. We have shown that the AND/OR graph representation is more efficient
for planning purposes than the directed graph of assembly states. An example of this
AND/OR graph representation of assembly plans is shown in Figure 3.

The AND/OR graph plan representation represents alternative assembly sequence
plans as tree structures. This same tree structure may bc used as a framework for the
planning of more detailed operations and motions required in the implementation of the
task. Figure 4 shows an example of a tree strucnn'c which incorporates the discrete
operations associated with devices and mechanisms, including robots and sensors. In this
case, the task plan chosen as a single _ from the AND/OR graph has been augmented
by the incorporation of the robot and fixture dewces. Figure 5 shows the extension of the
same framework to the description of continuous motion operations at the lowest level of
the control structure. Such a hierarchy between high level symbolic operations sequence
planning and low level continuous motion planning is typical of the requirements of a
hierarchical control ..architecture. The use of a common task representation which maps

tween levels, facilitates the integration of low level functions such as path planning,
kinematic learning and control, dynamic learning and control, and sensor recognition
which might be approached using neural net computational techniques. Figure 6 shows
one example of a control architecture for such a hierarchical system. In this example, the
real time motion is executed in conjunction with a real time planning system which
modifies the execution of operations according to changing task constraints. Both the
real time and off-line planning systems require a common task representation which may
be accessed in order to reason about alternativesequences which accomplish the task
goals.

In assembly planning as well as other task planning problems, one cannot
explicitly generate all of the feasible plans due to the combinatorial growth in the number
of possible sequences. Instead, one must invoke some form of evaluation or objective
functionin order to choose among feasiblesequences and examine in detailonly those

candidate plans which are most desirable. In assembly planning, these objective

functionsare relatedto the complexity of the manipulation operations,the cost of the

resourcesrequired to execute these operations,the time required for execution, and the

complexity and cost of fixtu_s and toolingused in the implementation of the system.

Similargoals and constraintsoccur in other taskplanning domains such as metal cutting

or parts molding. Such objective functions are extremely difficult to specify in either an
explicit and analytical form or even as a heuristic knowledge base. An adaptive or
learning system which could synthesize such evaluation functions for a given task
domain could facilitate the process of task planning for these applications. Within a
hierarchy, a neural net might be used to synthesize the objective function then as a
computational approach to minimizing an objective function. This on-line search
problem over a distributed representation may bc well-suited to a neural net solution.
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3. ISSUES AND OPPORTUNITIES

The previous section described an example of the hierarchical system of planning
and control which is typical of many manufacturing systems, and suggested ways in
which neural net computation might provide an effective tool at the levels of planning,
discrete control, continuous control, and sensing. The use of these computational tools
will be effective only if they meet needs or expectations of the users. The manufacturer
has a number of key practical performance goals which he requires from any system
which is being developed. Typically, systems speed, throughput, accuracy, and overall
costs of both implementation and operation are factors which he must consider. The

flexibility of a system is the ability to change functionality and respond to new
requirements, and is an increasingly important component of such systems. The ability
to efficiently implement a system, to operate the system reliably, and provide a degree of
flexibility which permits an evolution of the manufacturing system in accord with
product changes, are important elements which influence the effectiveness of automation
m manufacturing today.

Table 1 summarizes a set of technical issues and opportunities which must be
addressed in order to expand the capabilities of robotics and automation technology in
the manufacturing domain. These issues are grouped into four separate areas:
mechanisms, control, representation and planning, and architecture and implementation.
While the mechanisms themselves are not directly related to the implementation of
adaptive and learning systems, it is clear that improvements in sensing technology, motor
technology, and new mechanisms such as flexible arms and sophisticated hands, will
.place increasingly strong demands on the corresponding control and planning systems to
incorporate adaptive capabilities for utilization in specific tasks. There are important
opportunities in the development of more robust controllers by utilizing learning systems
to more accurately identify robot kinematics and dynamics, to more efficiently adapt
dynamic control parameters to particular tasks, and to more effectively integrate sensory
information into the control process. The capability to adapt to an inherently uncertain
representation or model of the task, is key to the improved reliability of these systems.
An automated system for learning of accurate kinematic or dynamic parameters of
current robot arms, would have immediate impact in terms of the potential performance
of these arms. Newer systems which incorporate fight weight, flexible arms or multiarm
interactions, will also require such on-line identification in order to function effectively.

Planning and control of the system depends explicitly on the nature of the
representation of the robot, task, and environment. In part, a representation is provided
by an initial model or description of the system, but increasingly this representation must
be updated or derived from sensory information. Utilization of sensory information for
the identification of models and for the choice of plans and parameters, are ideal
candidates for the application of adaptive and learning systems. A robot, which in
response to changing conditions, can adapt its model of the task, the parameters of its
control, or the sequence of operations, will provide an important capability for
increasingly sophisticated applications. The integration of sensory information from a
variety of sources such as vision sensors, tactile sensors, and range sensors has been very
difficult to achieve in a purely analytical approach. Multisensor integration through
adaptive and learning techniques may be another important opportunity. As discussed
.previously, the architecture of these systems is typically hierarchical, and the effective
mtegranon and coordination among layers of this hierarchy is facilitated by the
adaptation of specific functions at one layer in response to generalized commands from a
higher level. "re basic architectural structure would be retained and the tuning of the
coordination and integration parameters would be left to

the adaptation mechanism rather than the painstaking trial and error process which is
currently employed.
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TECHNICAL ISSUES IN

ROBOTICS AND AUTOMATION FOR MANUFACTURING

MECHANISMS

Motor Technologies
Sensors - Vision, Tactile, Force, Proximity
Light Weight, Flexible Arms
Redundant Arms

Grasping and Hand Design

CONTROL

Sensor-Based Control/Fine Motion Control

Adaptive Control/Learning Control
Flexible Arm
Multi-Arm

Dexterous Manipulation

REPRESENTATION AND PLANNING

Representation of Uncertainty
Task Planning
Fine Motion Planning
Systems Scheduling
Multi Sensor Integration

ARCHITECTURE AND IMPLEMENTATION

Hierarchical Architectures

Product and Systems Design Tools
User and Programmer Interface
Programming Language

TABLE I



A learning approach which we have used to facilitate the implementation of a
robotic system [6], provides an example of parameter learning at the robot operation
level. This approach utilizes parameter adaptation within a task which was specified as a
set of discrete operations in a conventional high level robot programming language. The
structure of this system is shown in Figure 7. The robot automatically generates its own
trial and error procedure by modifying the parameters of its program. It generates a
representation of the evaluation function parameter space, smooths that optimization
surface based on an analytical model of the timing and sampling behavior of the robot
itself, and then employs that optimization surface in order to modify the parameters of
execution of the robot program in real-time. As the task is repeatedly executed, the
evaluation function surface itself is also updated. One example of such a parameter

learning task used in this study was the mating of mechanical connectors. In this
example the two variable robot program parameters were the velocity of the robot hand
and the threshold force for detection of insertion. The performance function J was the
time required to accomplish the task. The resulting performance surface for this robotic
insertion task is shown in Figure 8. Notice that the initial surface in the top figure is

strongly effected by the sampling times and the instruction execution times of the robot
hand. The lower part of Figure 8 shows the smooth performance surface used in the
learning procedure. Given this task, the robot performed its own set of trial and error
procedures in order to establish the performance surface. The convergence of the
performance with the number of experiments is shown in Figure 9. As the robot
continued to perform this task, the optimization surface was appropriately modified in
real time. This example shows how a robot could effectively learn its performance space
on a given task and then update, in real time, execution parameters in order to improve its
own performance.

An example of the application of adaptation to a sensor-based control problem is
the use of sensor-based control in conjunction with partial state information. In [7], we
have described some experiments in which feature information derived from images is
used as a partial state representation of the relative position of a robot, and this feature
information was dirtily coupled into a robot joint control loop. Such a hierarchical
structure illustrated in Figure 10 utilizes a lower level feature-based control with partial
state information, and a higher level position-based control which utilizes a full position
interpretation of information from the images. This decomposition of the problem is
effective because it matches the dynamic capabilities of the vision system with the speed
requirements for real-time robot control. The full image interpretation carried out at a
lower speed, sufficient to maintain the stability and reliability of the motion but
delegating the real-time sampling and control to the feature based loop. Adaptation is
required in this system because an accurate model of the correspondence between feature
space and joint space is never in fact available and must be learned or identified in real-
time. The examples described in [7] used a classic model reference adaptive control
system which implicitly identifies the feature-to-joint sensitivity matrix. The on-line
identification of such a nonlinear mapping might be effectively implemented using neural
network techniques.

The choice of evaluation functions is fundamental to the problem of learning and
adaptation, and in these examples, arises in model identification, parameter learning, and
decision making. While model-fitting evaluation functions such as least squared fits are
often used for these problems, they are often not necessarily the most desirable,
particularly for complex problems. We have been interested in the application of
complexity, or representation measures for such problems. In [8], we describe an
approach to model size identification which utilizes a minimal representation size
criterion, and effectively trades off between the complexity of the chosen model and the
accuracy of its fit to data. The further application of such generalized complexity
measures to learning problems using neural networks will be extremely interesting to
explore.
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Several areas where neural networks may play a role in the development of
robotics and automation technology for industrial applications are summarized in Table
2. In the short term, a clear opportunity for the impact of learning systems is on the use
of sensing and inspection technology for industrial applications. In particular, it would
seem that learning systems could offer a marked advantage in the ease of implementation
and training of such inspection systems. Developing an inspection tool for new
applications is often difficult and expensive, and the ease of developing this system will
often be as important as the outright need of the working system. This adaptive or
learning capability is of key importance for many short term applications. Another good
candidate for such an application in the short term is the area of kinematic calibration of
robot arms, utilizing sensing systems to measure positions of the arm end effector. A
learning system might identify a complex nonlinear model of the robot arm kinematics
which could be used to improve the positioning accuracy of the robot arm itself. A third
example which is feasible in the short term, would be the .type of parameter learning
within the structure of an existing robot program which was illustrated cartier. In this
case, the parameter adaptation is essentially a smooth adaptation to local changes and
might be handled efficiently by existing neural network techniques. Kinematic path
planning is another area of promise, but is in general more difficult because of the
dimensionality of the geometric representations required, and the resulting complexity of
a neural net implementation.

In the longer term, there arc many opportunities for the application of learning
systems to task planning and task reasoning problems, particularly those that confront the
issue of uncertainty in the task environment. Current experiments in learning of robot
dynamics parameters suggest that this is another promising area, and certainly the
integration of sensory information into an adaptive robot control sm_cture will be an
important element of future robot systems. This will require adaptive systems which
both converge quickly, maintain stability, and handle the growing dimensionality of the
problem. The use of learning systems to improve the capabilities of planning and
execution of fine motion operations such as detailed force control and grasping arc
promising areas.

An important element in the development of these adaptive and learning
techniques and in their evaluation, will be the recognition that robotics is experimental in
nature. Development often re.quires the building of systems and the testing of new tools
on real systems in order to evaluate their effectiveness. In applications areas such as
manufacturing, this experimental demonstration becomes even more critical since the

functional capability of these tools is related most to their ability to compensate for
characteristics which arc not entirely predictable or which cannot be modeled.

Neural network computing systems with capabilities for supervised learning,
matching, and generalization are being developed and explored in a variety of simulated
and experimental contexts. Robotic systems offer a promising domain for this

exploration since the practical application of complex robotic systems may require
adaptive and a learning behavior in order to achieve their desired functionality. In
manufacturing, these capabilities in particular, may improve the implementation
efficiency, increase the reliability of the system, and improve the performance and
accuracy of inspection and control functions. The hierarchical nature of a manufacturing
systems architecture lends itself to the integration of these techniques into real systems,
the use of neural network techniques in off-line planning, systems design, and product
design is an area of particular promise. Neural network principles need to be better
understood, and convergence, computational efficiency, and stability characterized more
completely. Robotics and automation provide an opportunity for evaluation of these
capabilities, and a setting for the development of practical tools to enhance the
functionality of robotic systems in manufacturing applications.



ROLE OF NEURAL NETWORKS IN
ROBOTICS FOR MANUFACTURING

GENERAL:

Autoassociation/Matching
Classification
Generalization

Learning

SHORT TERM:

Sensor-Based Inspection - Easily Trained
Sensor Interpretation and Abstraction
Calibration/Identification

Parameter Learning in Stereotyped Tasks
Kinematic Path Planning

LONG TERM:

Task Planning

Task Learning in Complex Systems

Reasoning with Uncertainty

Learning in Dynamic Control

OPPORTUNITY:

Improve Rgliability Through Adaptive Behavior
Improve Implemgntation Tools Through Trainable Systems

CAUTION:

DON'T IGNORE EXPERIMENTAL APPROACH IN ROBOTICS -
REAL SYSTEMS

TABLE 2
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